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ABSTRACT 
In distributed database systems, information sharing across 
different parties is a common application.  Almost all information 
sharing applications face a common threat from adversaries 
intending to obtain private data from the other parties. In this paper, 
we address privacy protection in distributed information sharing 
environments.  In particular, we model and analyze privacy 
intrusion attacks.   Most existing work adopts a model of honest-
but-curious adversaries.  We consider much more malicious and 
aggressive adversaries which may launch multiple correlated 
attacks, and propose and evaluate countermeasures. Numerical data 
show that while simple, these countermeasures can effectively 
defeat malicious attacks in practical application environments.  
Game theory is utilized to derive optimal strategies for both 
defending party and adversary. 

1.  INTRODUCTION 
In this paper, we address issues related to sharing 
information across autonomous entities, each of which 
holds a private database.  The entities are supposed to 
follow a distributed protocol to answer queries 
spanning their databases.  This kind of information 
sharing has a wide range of applications including 
document sharing, medical databases, online 
recommendation service, etc [2]. 

There is an increasing concern regarding the protection 
of private data in information sharing.  In particular, 
there may be adversaries among the entities which 
intend to obtain the private data of the other entities.  
Thus, the information sharing protocol should prevent 
the private data of an entity from being disclosed to 
the other entities.  Thereby, for each entity, the benefit 
of information sharing can be enjoyed without privacy 
disclosure.  Privacy preserving data mining is one 
example of privacy protection in information sharing 
across distributed databases.  It performs data mining 
tasks across multiple databases without compromising 
the privacy of each individual database [7, 8, 17, 18, 
19, 21, 24, 25, 26]. 

1.1  Previous Work 
A number of studies have been carried out to protect 
privacy in information sharing.  Several protocols 
have been proposed to address privacy preserving in a 
wide variety of information sharing applications 
including intersection [1, 2, 10, 15, 20], equijoin [1, 2], 
association rule mining [17, 24], classification [8, 18, 
19, 25], and statistical analysis [7]. 

The majority of previous protocols assume that the 
adversaries do not collaborate with each other and are 
well disciplined to follow the protocol strictly (i.e., 
honest-but-curious, also known as semi-honest).  
Under this assumption, the only attack an adversary 
can perform is to record the communication and 
intermediate results and infer private information from 
them.  Based on the honest-but-curious assumption, 
most existing protocols model the information sharing 
problem as a variation of the secure multi-party 
computation problem [13], which has been proven 
solvable by a general combinatorial-circuit-based 
protocol proposed by Yao [27] and extended by 
Goldreich, Micali, and Wigderson [14].  However, the 
general protocol has a high communication overhead 
which makes it costly for many practical systems with 
large databases.  Researchers have noted the presence 
of this issue and reported studies on the design of 
more specific and efficient protocols [1, 2, 3, 4, 7, 8, 
10, 17, 18, 19, 20, 21, 24, 25]. 

1.2  Our Contribution 
Major contributions of this paper can be summarized 
as follows. 

 In this paper, we adopt a model which covers a 
much broader range of adversaries.  In particular, 
we stress that although the honest-but-curious 
assumption is reasonable in some cases, it is not 
sufficient in many practical situations.  In our 
model, adversaries may maliciously manipulate 
their data to be shared and launch multiple 
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correlated information sharing requests in order 
to obtain private data belonging to other parties. 

 We design and evaluate countermeasures to 
defeat the privacy intrusion attacks.  Our 
countermeasures are simple but effective.  
Numerical data show that our countermeasures 
can sufficiently prolong the time taken for an 
adversary to achieve its goal of privacy intrusion 
in many practical distributed information sharing 
environments. 

 We use game theory to derive the unique Nash 
equilibrium of the system, which is a state in 
which both the defending party and the adversary 
achieve their optimal strategies.  Neither party 
can benefit if it unilaterally changes its strategy.  
Thus, to benefit their own interests, both parties 
have to adopt the strategies defined by the unique 
Nash equilibrium. 

Our results are significant since this study is the first to 
efficiently and effectively protect privacy given the 
presence of multiple correlated adversaries which are 
much more powerful and aggressive than honest-but-
curious adversaries.  Our work is also the first to 
formally model the problem as a game between a 
defending party and multiple attacking adversaries, 
and to successfully obtain the unique Nash 
equilibrium.  Our results can be directly applied to 
information sharing systems which are under the threat 
of privacy intrusion attacks. 

1.3  Paper Outline 
The rest of the paper is organized as follows.  We 
formally define the information sharing system and 
the participating parties in Section 2.  We describe the 
strategies of adversaries in Section 3, and develop the 
corresponding countermeasures of defending party in 
Section 4.  In Section 5, we give a game theoretic 
analysis of the adversary strategies and defending 
countermeasures.  We present the numerical results in 
Section 6, and use the results to estimate the time 
taken for the adversaries to compromise the private 
information of the defending party.  We conclude with 
a summary and extensions of our result in Section 7. 

2.  MODELS 
In this section, we introduce models of information 
sharing systems.  First, we define the information 
sharing system.  We will start with a simple model and 
extend it to a more general one.  Then, we define a 

classification of parties in information sharing systems, 
depending on their objectives and roles. 

2.1  A Simple System Model 
An information sharing system consists of two parties, 
named 0P  and 1P  respectively.  Each party iP  has a 

private dataset iV  which contains numerous data 

points.  We assume that information sharing is 
realized in a distributed manner, which does not rely 
on any trusted third party [16].  Hence, 0P  and 1P  are 

supposed to follow a pre-designed protocol and 
communicate via network to realize information 
sharing.  As such, we assume that for each party, there 
is a local processing module that processes its dataset 
and exchanges information with (the local processing 
module of) the other party.  The protocol is 
implemented by the processing of and communication 
between the local processing modules of the two 
parties.  Figure 1 shows an information sharing system 
under this framework. 

We use 0 1( , )f V V  to denote the information sharing 

function realized by the system.  That is, as is shown 
in Figure 1, 0 1( , )f V V  is the output of the system 

based on the input 0V  and 1V .  Examples of 

information sharing functions include intersection 
( 0 1V V∩ ), equijoin ( 0 1V V ), scalar product ( 0 1V V⋅ ), 

etc. 
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Figure 1. A Simple Information Sharing System 

Consider an example system where the information 
sharing function realized is intersection.  Let 0V  and 

1V  be {0,1,2,3}  and {2,3, 4,5} , respectively.  We 

have 

 0 1 0 1( , ) {2,3}.f V V V V= ∩ =  (1) 

We note that {0,1}  is a subset of 0V  but has no 

intersection with 0 1V V∩ .  Thus, {0,1}  is private to 

0P .  Similarly, the private data of 1P  is {4,5} .  
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Generally speaking, given a party iP , if a data point in 

iV  cannot be inferred from 0 1( , )f V V , then the data 

point is private to iP .  Let the set of private data 

points of iP  be P
iV .  In the intersection problem, we 

have 

 0 1\ ( , ).P
i iV V f V V=  (2) 

In the rest of this paper, we will focus our 
investigation on a problem in which the information 
sharing function performed is intersection.  Extensions 
to other functions will be discussed in Section 7. 

In an information sharing system, we define an 
information sharing session as a time interval which 
starts when a party initializes the information sharing 
process and ends when the execution of the protocol is 
completed and both parties obtained the output of the 
information sharing function.  In the rest of the paper, 
an information sharing session will also be called as a 
query. 

2.2  Extended System Model 
The above model of information sharing system can 
be generalized to the case where one party (say, 0P ) 

shares its information with a group of parties, say 

1 1{ | 1, , }jP j k= = …P , where 1 jP  has data set 1 jV .  

We assume that datasets of parties may vary with time 
and hence it may be necessary for a member in 1P  to 

perform multiple queries with 0P .  For example, let 

0V  be the list of products of an enterprise.  If the 

enterprise updates its product list once every three 
months, a party 1 jP  may then like to perform a query 

once every three months to update the shared 
information. 

In an information sharing system, members of 1P  may 

perform queries asynchronously. Nevertheless, we 
assume that two or more members in 1P  will not 

simultaneously perform queries. This assumption 
simplifies our analysis without loss of generality. 

Obviously, our extended model of information sharing 
systems covers a wide range of distributed 
information sharing systems. 

2.3  Classification of Parties 
In this paper, we address issues related to protecting 
private data of a party.  As such, it is necessary to 

classify parties in an information sharing system into 
two categories.  One category consists of honest 
parties.  An honest party would never intentionally 
intrude the private data of the other party.  The other 
category consists of adversaries.  A party is an 
adversary if it intends to obtain the private data of the 
other party.  In this paper, we consider systems where 

0P  is always honest while members in 1P  can be 

either an honest party or an adversary. We call 0P  the 

defending party as it needs to defend itself from 
potential attacks of adversaries.  We refer to the 
members in 1P  as the visiting parties.  If a party in 1P  

is honest, we say that it is a legal partner of 0P . 

3.  ADVERSARY AND ITS STRATEGIES 
Recall that the objective of an adversary is to obtain 
the private dataset of 0P . In the worst case, an 

adversary may not have real data to share but may just 
want to obtain the entire 0V . We study this worst case 

assumption in this paper.  

An adversary can achieve its objective via various 
attacking techniques. Single-query is one kind of 
attacking techniques.  With the single-query technique, 
the adversary launches one single query to obtain 0V . 

One example is as follows.  Let the entire population 
of the data points in 0V  (i.e., the set of all possible 

values that may occur in 0V ) be V .  Let 1 jP  be an 

adversary.  If 1 jP  sets its input dataset to be 1 jV V′ = , 

then we have 

 0 1 0 0 0( , ) ( , ) .jf V V f V V V V V′ = = ∩ =  (3) 

That is, the adversary will successfully obtain the 
entire set of 0V . 

Generally speaking, this kind of single-query attack 
may not be effective and is easily detectable. In many 
practical situations, the size of datasets may be several 
orders less than the size of V .  Given this knowledge, 

0P  can simply reject a party 1 jP  if 1| | | |jV V′ =  for the 

case in the above example.  Thus, adversaries most 
likely use multiple-correlated-queries (MCQ) to 
achieve their objectives.  That is, one or more 
adversaries may launch multiple correlated queries 
and aggregate the outputs from these sessions to infer 
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0V .  In this paper, we deal with adversaries that use 

MCQ techniques. 

The pseudo-code of a typical implementation of MCQ 
attack technique is given as follows. 

0;h =  

repeat in each query 

1h h= + ; 

Generate 1 jV V′ ⊆  such that no data point in 1 jV ′  

has been included in the input of previous queries; 

Use 1 jV ′  as the input to local processing module; 

Receive 0 1h jW V V ′= ∩  as the output; 

until all values in V  has been included in the input of 
previous queries; 

As we can see, the adversaries enumerate the data 
values in V  to collide with the values of the data 
points in 0V .  As we can see, when the adversaries 

have exhausted all the data values in V , the union of 

iW  becomes exactly the same as 0V .  That is, 

 0
1

.
h

j
j

V W
=

=∪  (4) 

Thereby, the adversaries achieve their objective of 
compromising 0V . 

4.  DEFENDING PARTY AND ITS 
COUNTERMEASURES 
The defending party needs to deploy certain 
countermeasure in order to prevent its own private 
data from being obtained by adversaries. We propose 
a countermeasure consisting of three components: a 
local processing module which implements a secured 
exchanged protocol, an adversary detection module, 
and an input decision module. 

The secured exchange protocol, which is implemented 
in the local processing module, uses encryption 
technique to guarantee that only the shared 
information is accessible to either party.  The 
adversary detection module determines if a visiting 
party is an (potential) adversary and generates an 
auxiliary signal to the input decision module.  Based 
on the auxiliary signal, the input decision module 
decides the input of the defending party to its local 
processing module 
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Figure 2. Block Diagram of the Defending Party 

Figure 2 shows the block diagram for the defending 
party with these three components. We will describe 
algorithms to realize these components. As we will see, 
these three components integrally reduce the impact of 
attacks launched by adversaries. 

4.1  Secured Exchange Protocol 
The secured exchange protocol that we adopt is a 
variation of an intersection protocol proposed in [2]. 
Let the visiting party be 1 jP . It has a dataset of 1 jV  to 

be shared with 0P , which has a dataset 0V .  Let 0E  

and 1E  be a pair of commutative encryption functions 

[6, 13] such that 0 1 1 0( ( )) ( ( ))E E E E⋅ = ⋅ .  0E  is only 

known to 0P  while 1E  is only known to 1 jP .  By 

using 0E  to encrypt 0V , the defending party is assured 

that 1 jP  cannot compute 0V  from 0 0( )E V . 

The pseudo-code of the secured exchange protocol is 
given as follows. 

1. 1 jP  encrypts its dataset 1 jV  to 1 1( )jE V by using 

encryption function 1E ;  1 jP  sends 1 1( )jE V  to 0P ; 

2. 0P  encrypts 0V  and 1 1( )jE V  to 0 0( )E V and 

0 1 1( ( ))jE E V , respectively by using encryption 

function 0E ; 0P  sends 0 0( )E V  to 1 jP . 

3. 1 jP  encrypts 0 0( )E V  to 1 0 0( ( ))E E V  by using 1E  

and sends 1 0 0( ( ))E E V  to 0P ; 

4. 0P  computes 

0 1 1 1 0 0 0 1 0 1( ( )) ( ( )) ( ( )).j jE E V E E V E E V V∩ = ∩  (5) 

and sends 0 1 0 1( ( ))jE E V V∩  to 1 jP ; 

5. 1 jP  decrypts 0 1 0 1( ( ))jE E V V∩ to 0 0 1( )jE V V∩  

and sends 0 0 1( )jE V V∩  to 0P ; 
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6. 0P  decrypts 0 0 1( )jE V V∩  to 0 1 jV V∩  and sends 

0 1 jV V∩  to 1 jP . 

(To Reviewers: We made a mistake on this protocol in 
our paper submitted to PODS 2005.  This version is 
correct.  We apologize for the confusion.) 

It can be shown that this protocol produces 
countermeasures to prevent an adversary from 
modifying its local processing module.  That is, during 
the execution of this protocol, only the shared data 
(i.e., 0 1 jV V∩ ) is accessible to either party even if 1 jP  

is an adversary and intends to deviate from the 
protocol.  The proof of this property can be found in 
Appendix 1.  This property guarantees the security for 
the systems where adversaries do not change their 
input datasets.  Note that adversaries of this kind still 
have a valid dataset to share.  However, at the same 
time, they are curious about the private data of the 
defending party. 

We stress that this property is necessary but 
insufficient for the systems we consider.  In our 
systems, adversaries are much more malicious and 
aggressive. They may not have any valid dataset and 
are only interested in compromising the private data of 
the defending party. Thus, we need an additional two 
components (adversary detection module and input 
decision module) to defeat the adversaries. 

Adversary Detection Module 

Recall that the objective of the adversary detection 
module (ADM) is to determine whether a visiting 
party is a legal partner or an adversary and send an 
auxiliary signal to the input decision module. 

We propose the following algorithm for this module.  

Let the input dataset of the visiting party be 1 jV ′ . 

If 1| |j SV N′ ≤ , ADM identifies the visiting party as an 

honest party. 

If 1| |j SV N′ > , ADM identifies the visiting party as an 

honest party with probability 1(| |)jg V ′ . 

where SN  and ( )g ⋅  are parameters of the algorithm 

set by the defending party. 

This algorithm is designed based on the following 
intuition: The size of the population V  is usually very 
large in comparison with the size of the datasets used 

in information sharing.  For example, if two hospitals 
are to exchange patient records, the size of V , which 
should contain all the records of potential patients, can 

be in the order of 810  or higher.  The real dataset in a 
particular hospital, however, may have size in the 

order of 310 .  As such, the adversary may have to 
forge a large input dataset in information sharing to 
obtain the private dataset of the defending party in a 
reasonable amount of time.  On the other hand, a legal 
partner is unlikely to have a large dataset.  Thus, the 
algorithm uses a threshold ( SN ) to make the first 

determination if a visiting party is an adversary. 

Input Decision Module 

The input decision module uses the auxiliary signal bit 
from the adversary detection module to determine the 
input to the local processing module.  Let the input to 

the local processing module be 0V ′ .  There are two 

possible strategies for the input decision module; one 
is to keep honest and use 0V  as its input (i.e., 

0 0V V′ = ).  The other is to change the input to 0 0V V′ ≠ .  

In particular, if the input decision module uses the 

empty set as the input (i.e., 0V φ′ = ), we say that the 

defending party rejects the query from the visiting 
party.  In Section 5, we will use game theory to 
formulate a specific strategy for this module. 

Performance Metrics 

We now define the performance metrics of the 
countermeasures of the defending party.  The 
defending party has two goals in the system.  One is to 
obtain the correct result of the information sharing 
function with legal partners.  The other is to prevent 
privacy leakage.  Thus, the performance can be 
measured by the following two metrics, named error 
rate and average total-query-interval of adversaries, 
respectively. 

We define the error rate ε  as the probability that an 
information sharing session cannot generate the 
correct result with a legal partner.  To keep the 
information sharing effective, we assume that the 
defending party requires a higher bound on the error 
rate to be 0ε .  That is, the defending party requires the 

information sharing system to have an error rate 

0ε ε≤ . 
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We define the average total-query-interval of 
adversaries, denoted by T , as the expected value of 
the total time taken by the adversaries to obtain the 
complete dataset of the defending party. Let it  be the 

time taken to perform the i -th query. Then, T  can be 
calculated as follows. 

 
1

( ),
h

i
i

T E t
=

= ∑  (6) 

where ( )E ⋅  refers to the expected value and h  is the 
total number of queries taken by the adversaries to 
obtain 0V . In the case when it  is a constant (i.e., 

it t=  for all 1, ,i h= … ), T  becomes 

 ( ) ( ) .T E h t E h t= ⋅ = ⋅  (7) 

If we normalize the time such that t  equals to one 
time unit, we have 

 ( ).T E h=  (8) 

Recall that there are various parameters in the system 
need to be set. On the side of defending party, SN , 

( )g ⋅ , and 0V ′  need to be determined. On the side of 

adversary, the input dataset should be set. Obviously, 
the selection of these parameters has direct impact on 
the performance metrics. The defending party would 
want to choose the parameters so that ε  can be 
minimized and T  can be maximized. On the other 
hand, the adversary certainly wants to minimize T .  In 
the next section, we address how the parameters 
should be chosen so that the system reaches 
equilibrium. 

5.  GAME THEORETIC ANALYSIS 
In this section, we formalize parameter-setting 
strategies for both the defending party and the 
adversary based on game theory.  Specifically, based 
on the game theoretic formulation, we derive a fixed 
point where both the defending party and the 
adversary reach their optimal strategies. 

Our derivation is based on the following assumptions.  
These assumptions are reasonable and have been 
commonly taken in the literature [5, 13]. 

ASSUMPTION 1. Both 0| |V  and 1| |jV  have Poisson 

distribution with mean N .  That is, 

 0 1Pr{| | } Pr{| | } .
!

i N

j

N e
V i V i

i

−

= = = =  (9) 

ASSUMPTION 2. (Complete Information) Both the 
defending party and the adversary have full 
knowledge of all the parameters in the system, which 
are SN , ( )g ⋅ , and the distribution of 0| |V  and 1| |jV . 

ASSUMPTION 3. (No External Knowledge) No other 
information is available to either party. 

For example, the defending party has no external 
knowledge, other than the auxiliary signal, about 
whether a visiting party is an adversary or an honest 
party.  The adversary has no external knowledge of the 
data points in 0V . 

5.1  Overview 
We can model the information sharing process as a 
two-party, non-cooperative, complete-information, 
repeated game [11] between the defending party and 
the visiting parties.  The game is non-cooperative as 
the defending party does not have a pre-knowledge of 
whether a visiting party is a legal partner or an 
adversary. 

The defending party has three parameters to determine: 

SN , ( )g ⋅ , and its input to the local processing 

module, denoted by 0V ′ .  The utility function of the 

defending party is given as follows. 

 0
0

0, if ,
( , ( ), )

, otherwise.H Su N g V
T

ε ε≥′⋅ = 


 (10) 

Recall that 0ε  is the maximum error rate that can be 

tolerated by the defending party.  Let the input of a 
visiting party to its local processing module be 1 jV ′ .  

The utility function of an adversary is then given by 

 1

1
(| |) .A ju V

T
′ =  (11) 

Note that the physical meaning of (11) is that the 
utility of the adversary is proportional to the average 
amount of private information obtained by the 
adversary in one query when the adversary obtains 0V . 

Since a legal partner always keeps honest and has no 
intention of privacy intrusion, we do not consider the 
legal partners in the game. 
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5.2  Nash Equilibrium 
We now derive the fixed point where both the 
defending party and the adversaries reach their 
optimal strategies, thereby maximizing their utilities.  
This fixed point is called Nash equilibrium [11], and 
is defined as follows. 

DEFINITION 1. Nash equilibrium is a pair of strategies, 
one for the defending party and the other for the 
adversary, such that no party can gain more utility by 
changing its strategy when the other party keeps its 
strategy unchanged. 

That is, Nash equilibrium represents a situation where 
no party has an incentive to unilaterally change its 
strategy.  If a unique Nash equilibrium exists in a 
game with rational 1  players, then the players will 
always choose the strategies defined in the equilibrium 
[11]. 

For our information sharing system, the unique Nash 
equilibrium is given as follows. 

THEOREM 1. The following strategies form the unique 
Nash equilibrium of our information sharing system. 

 The defending party chooses a strategy HS  

which includes the maximum SN  that satisfies 

 
| |

0(1 ) ,
!

S

i NV
S

i N

N N e

i i
ε

−

=
− ⋅ ≤∑  (12) 

the distribution ( )g ⋅  that satisfies 

 [ 1,| |], ( ) ,S
S

N
i N V g i

i
∀ ∈ + =  (13) 

and the input dataset 0V ′  that satisfies 

 0
0

,  0,

,  1.

V if  the auxiliary input is
V

if  the auxiliary input isφ
′ = 


 (14) 

 The adversary chooses a mixed (randomized) 
strategy AS  which uses an input dataset of size i  

with probability 

                                                     
1 Here, we say that a player is rational if the player wants to 

maximize its expected utility and is capable of choosing the 
strategy that maximizes its expected utility. 

 1 | |

0, if ,

Pr{| | } , if .
!

!
S

S

i

j SjV

j N

i N

N
V i i N

N
i i

j j=

<

′ = = ≥
 ⋅ ⋅
 ⋅

∑
(15) 

PROOF. We will prove the theorem in three steps.  In 
the first step, we show that an adversary cannot obtain 
more utility by unilaterally changing its strategy.  In 
the second step, we show that the defending party 
cannot obtain more utility by unilaterally changing its 
strategy.  In the third step, we show that the 
equilibrium is unique in the game. 

PROPOSITION 1. An adversary cannot obtain more 
utility by unilaterally changing its strategy. 

We first consider the number of queries needed by an 

adversary to obtain 0V  when the strategies ,H AS S  

are used.  In one query, the expected number of data 
points in 0V  that can be obtained by the adversary is 

 .
| | | |

S
S

N N N
N

V V

⋅⋅ =  (16) 

Given a certain 1| |jV ′ , the adversary will always 

choose its input dataset 1 jV ′  such that no data point in 

1 jV ′  has been included in the input of previous queries.  

Thus, the expected number of T  is 

 
| |

.
S

V
T

N
≈  (17) 

That is, if the strategies ,H AS S  are used, the 

expected utility of an adversary is 

 1(| |) .S
A j

N
u V

T
′ =  (18) 

We now consider an adversary that changes its 

strategy to AS ′ .  Let the input dataset generated by 

AS ′  be 1 jV ′ .  To be different from 1 jV ′ , 1 jV ′  must 

satisfy at least one of the following two conditions. 

 There exists Si N<  such that 1Pr{| | } 0jV i′ = ≠ . 

 There exists Si N≥  such that  

 1 1Pr{| | } Pr{| | }.j jV i V i′ ′= ≠ =  (19) 
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If the first condition is satisfied, the expected number 
of data points in 0V  that can be obtained by the 

adversary in one query is always less than 
| |SN N V⋅ . 

If the second condition is satisfied, the expected 
number of compromised data points remains 

unchanged because for every 1 jV ′  with size 1| |j SV N′ ≥ , 

the expected size of 0 1| |jV V ′∩  is always equal to 

| |SN N V⋅ . 

Thus, an adversary cannot increase its utility by 
changing its strategy unilaterally. 

PROPOSITION 2. The defending party cannot obtain 
more utility by unilaterally changing its strategy. 

Suppose that the defending party changes it strategy to 

0: , ( ),H SS N g V′ ′ ′ ′⋅ .  Let ( )g i  be the probability that 

a legal partner with an input dataset of size i  obtains 
the correct result of information sharing.  The error 

rate when the defending party uses HS ′  satisfies 

 
| |

(1 ( )) .
!

S

i NV

i N

N e
g i

i
ε

−

=

⋅′ ≥ − ⋅∑  (20) 

The expected number of data points in 0V  that can be 

obtained by the adversary in one query becomes at 
least 
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If the defending party can obtain more utility from  

HS ′ , we have 
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and 
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From (22), we have 
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which contradicts (23).  Thus, the defending party 
cannot increase its utility by changing its strategy 
unilaterally. 

PROPOSITION 3. The equilibrium ,H AS S  is unique. 

Suppose that there is Nash equilibrium ,H AS S′ ′  such 

that , ,H A H AS S S S′ ′ ≠ .  Let the error rate and the 

average total-query-interval of adversaries when the 

parties choose ,H AS S′ ′  be ε ′  and T ′ , respectively.  

Apparently, there is 

 0ε ε′ ≤  (25) 

because otherwise we have 0Hu = .  That is, the 

defending party can simply keep honest to increase its 
utility.  In the following, we consider three cases: 
T T′ > , T T′ < , and T T′ = , respectively. 

Case 1. T T′ > .  Consider an adversary that changes 
the size of its input dataset to 

 
| |

0
1| | arg max{ ( )},

S

V

j
i N

V i g i
=

= ⋅  (26) 

where ( )g i  is the probability that a legal partner 
with input dataset of size i  obtains the correct 

result of information sharing.  Let 0T be the 
average total-query-interval of adversaries after 
the adversary changes its strategy.  Due to the 

proof of Proposition 2, if 0T T> , we have 

0ε ε′ > , which contradicts (25).  If 0T T≤ , the 

adversary obtains more utility by changing its 

strategy.  Thus, ,H AS S′ ′  is not Nash 

equilibrium. 

Case 2.  T T′ < .  As we have shown in the proof of 
Proposition 2, the defending party can always 
increase its utility by changing its strategy to HS . 

Case 3.  T T′ = .  In this case, the set of strategies 

,H AS S ′  must also have an average total-query-

interval of adversaries equal to T .  Apparently, 
the possibility of this case has been excluded in 
our proof to Proposition 2.  □ 

6.  PERFORMANCE EVALUATION 
We now evaluate the system capability for defeating 
privacy intrusion attacks.  From our discussion, it is 
now clear that it is virtually impossible to completely 
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eliminate or stop the privacy intrusion attacks defined 
in this paper.  The best measure that a defending party 
can take is to prolong the time taken for an adversary 
to achieve its objective of privacy intrusion. As we 
will show, our countermeasure is effective in the sense 
that the time taken by an adversary to obtain the 
private data has become too long to be practical. 

Our evaluation is based on the assumption that both 
defending party and adversary use strategies defined 
in the Nash equilibrium. 

6.1  Numerical Results 
In our experiment, we set the size of universal set V  

to be 810  and investigate how the size of 0V  impacts 

on  T  when 0ε  is set to 0.1 , 0.01 , and 0.001 , 

respectively.  The numerical results are shown in  
Figure 3, from which we can make the following 
observations. 
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Figure 3. Relationship between T  and 0V  

 For a given value of 0| |V , the lower 0ε  is, the 

more time (which is proportional to T ) the 
adversaries need to compromise 0V .  This 

coincides with intuition.  Recall that 0ε  measures 

the error in information sharing with legal 
partners.  The defending party pays the price of 
this error in exchange with prolonging the time 
taken for the adversaries to compromise 0V . 

 T  decreases as 0| |V  increases as expected. Note 

that we set | |V  to be 810  which, we believe, is a 
reasonable (lower bound of) size of the 
population of database records.  In the figure, 

0| |V  changes from 1,000  to 10,000 . Once 

again, these are the typical range for the database 
sizes. When 0| |V  and | |V  are set as in practical 

systems, we can see that the values of T  will be 
in the range of 15,000  to 85,000 . If each 
information sharing session lasts approximately 
one minute, the time needed by the adversaries to 
obtain 0V  will be more than 10  days. In many 

practical systems, this would be too long for the 
data in 0V  to be meaningful. 

7.  FINAL REMARKS 
We have addressed issues related to privacy protection 
in information sharing, which has become an 
important and common application in distributed 
database systems.  Different from most of the existing 
work which usually adopts a model of honest-but-
curious adversaries, we consider much more malicious 
and aggressive adversaries which may launch attacks 
with multiple correlated queries in order to obtain 
private data belonging to other parties.  We design 
countermeasures against such privacy intrusion attacks.  
Numerical data show that our countermeasures can 
sufficiently prolong the time taken for an adversary to 
complete its privacy intrusion mission, such that it 
becomes impractical for the adversary to achieve its 
objective.  We have formally modeled the problem as 
a game between a defending party and multiple 
attacking adversaries and have successfully derived 
the unique Nash equilibrium of the system.  These 
results provide guidelines for design and configuration 
of the distributed systems that provide information 
sharing across multiple parties and are under the threat 
of multiple correlated query attacks. 

The work reported in this paper is preliminary and 
allows for many possible extensions.  One possible 
extension is to detection an intrusion by analyzing 
query traffic.  For example, if in a short period of time, 
an abnormal number of queries are from the same IP 
address or subnet, there is a high probability that these 
parties are actually forged by an adversary to perform 
privacy intrusion attacks.  This kind of traffic analysis 
is similar to intrusion detection in denial of service 
(DOS) attack [9, 12, 22, 23].  Another extension is to 
extend the information sharing function from 
intersection to other operations.  Our results can be 
readily applied to information sharing systems with 
functions equijoin ( 0 1V V ) and scalar product 

( 0 1V V⋅ ).  We are currently investigating the privacy 
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preserving protocols for sum, union, and other 
information sharing functions. 

8.  REFERENCES 
[1] R. Agrawal, D. Asonov, and R. Srikant, 

Enabling sovereign information sharing using 
Web Services, in Proceedings of the twenty-
third ACM SIGMOD international conference 
on Management of data, 2004, pp. 873-877. 

[2] R. Agrawal, A. Evfimievski, and R. Srikant, 
Information sharing across private databases, 
in Proceedings of the twenty-second ACM 
SIGMOD international conference on 
Management of data, 2003, pp. 86-97. 

[3] B. Chor and N. Gilboa, Computationally 
private information retrieval (extended 
abstract), in Proceedings of the twenty-ninth 
annual ACM symposium on Theory of 
computing, 1997, pp. 304-313. 

[4] B. Chor, O. Goldreich, E. Kushilevitz, and M. 
Sudan, Private information retrieval, in 
Proceedings of the thirty-sixth Annual 
Symposium on Foundations of Computer 
Science (FOCS'95), 1995, pp. 41-50. 

[5] N. Dalvi, P. Domingos, Mausam, S. Sanghai, 
and D. Verma, Adversarial classification, in 
Proceedings of the tenth ACM SIGKDD 
international conference on Knowledge 
discovery and data mining, pp. 99-108, 2004. 

[6] W. Diffie and M. Hellman, New directions in 
cryptography, IEEE Transactions on 
Information Theory, vol. 22(6), pp. 644-654, 
1976. 

[7] W. Du, Y. S. Han, and S. Chen, Privacy-
Preserving Multivariate Statistical Analysis: 
Linear Regression and Classification, in 
Proceedings of the fourth SIAM International 
Conference on Data Mining, 2004, pp. 222-
233. 

[8] W. Du and Z. Zhan, Building decision tree 
classifier on private data, in Proceedings of 
the IEEE International Conference on 
Privacy, Security and Data Mining, 2002, pp. 
1-8. 

[9] P. Ferguson and D. Senie, Network Ingress 
Filtering: Defeating Denial of Service Attacks 
which employ IP Source Address Spoofing, 
RFC 2267, 1998. 

[10] M. J. Freedman, K. Nissim, and B. Pinkas, 
Efficient Private Matching and Set 
Intersection, in Advances in Cryptology - 

Proceedings of Eurocrypt '2004, 
International Conference on the Theory and 
Applications of Cryptographic Techniques. 
Interlaken, Switzerland, 2004. 

[11] D. Fudenberg and J. Tirole, Game Theory, 
1991. 

[12] T. M. Gil, MULTOPS: a data-structure for 
denial-of-service attack detection, in Division 
of Mathematics and Computer Science. 
Netherlands: Vrije Universiteit, 2000, pp. 50. 

[13] O. Goldreich, The Foundations of 
Cryptography, vol. 2: Cambridge University 
Press, 2004. 

[14] O. Goldreich, S. Micali, and A. Wigderson, 
How to play ANY mental game, in 
Proceedings of the nineteenth annual ACM 
conference on Theory of computing, 1987, pp. 
218-229. 

[15] B. A. Huberman, M. Franklin, and T. Hogg, 
Enhancing privacy and trust in electronic 
communities, in Proceedings of the first ACM 
conference on Electronic commerce, 1999, 
pp. 78-86. 

[16] N. Jefferies, C. Mitchell, and M. Walker, A 
proposed architecture for trusted third party 
services, in Cryptography: Policy and 
Algorithms Conference, Springer LNCS 
v1029, pp. 98-104, 1995. 

[17] M. Kantarcioglu and C. Clifton, Privacy-
preserving distributed mining of association 
rules on horizontally partitioned data, in IEEE 
Transactions on Knowledge and Data 
Engineering, vol. 16, 2004, pp. 1026-1037. 

[18] M. Kantarcioglu and J. Vaidya, Privacy 
Preserving Naive Bayes Classifier for 
Horizontally Partitioned Data, in Workshop 
on Privacy Preserving Data Mining held in 
association with The third IEEE International 
Conference on Data Mining, 2003. 

[19] Y. Lindell and B. Pinkas, Privacy Preserving 
Data Mining, in Proceedings of the twentieth 
Annual International Cryptology Conference 
on Advances in Cryptology, 2000, pp. 36-54. 

[20] M. Naor and B. Pinkas, Oblivious transfer and 
polynomial evaluation, in Proceedings of the 
thirty-first annual ACM symposium on 
Theory of computing, 1999, pp. 245-254. 

[21] B. Pinkas, Cryptographic techniques for 
privacy-preserving data mining, ACM 



www.manaraa.com

SIGKDD Explorations Newsletter, vol. 4(2), 
pp. 12 - 19, 2002. 

[22] T. Ptacek and T. Newsham, Insertion, Evasion, 
And Denial Of Service: Eluding Network 
Intrusion Detection, Secure Networks Inc., 
1998. 

[23] S. Savage, D. Wetherall, A. R. Karlin, and T. 
Anderson, Practical network support for IP 
traceback, in Proceedings of the fifteenth 
ACM SIGCOMM Conference on Applications, 
Technologies, Architectures, and Protocols 
for Computer Communication: ACM Press, 
2000, pp. 295--306. 

[24] J. Vaidya and C. Clifton, Privacy preserving 
association rule mining in vertically 
partitioned data, in Proceedings of the eighth 
ACM SIGKDD international conference on 
Knowledge discovery and data mining, 2002, 
pp. 639-644. 

[25] J. Vaidya and C. Clifton, Privacy Preserving 
Naive Bayes Classifier for Vertically 
Partitioned Data, in Proceedings of the fourth 
SIAM Conference on Data Mining, 2004, pp. 
330-334. 

[26] V. S. Verykios, E. Bertino, I. N. Fovino, L. P. 
Provenza, Y. Saygin, and Y. Theodoridis, 
State-of-the-art in Privacy Preserving Data 
Mining, SIGMOD Record, vol. 33(1), pp. 50-
57, 2004. 

[27] A. C. Yao, How to generate and exchange 
secrets, in Proceedings of twenty-seventh 
Annual Symposium on Foundations of 
Computer Science, 1986, pp. 162-167. 

 

9.  APPENDIX 
9.1  Proof of the Security of Secured Exchange 
Protocol 
The pseudo-code of the secured exchange protocol is 
stated as follows. 

1. 1 jP  encrypts its dataset 1 jV  to 1 1( )jE V by using 

encryption function 1E ;  1 jP  sends 1 1( )jE V  to 0P ; 

2. 0P  encrypts 0V  and 1 1( )jE V  to 0 0( )E V and 

0 1 1( ( ))jE E V , respectively by using encryption 

function 0E ; 0P  sends 0 0( )E V  to 1 jP . 

3. 1 jP  encrypts 0 0( )E V  to 1 0 0( ( ))E E V  by using 1E  

and sends 1 0 0( ( ))E E V  to 0P ; 

4. 0P  computes 

0 1 1 1 0 0 0 1 0 1( ( )) ( ( )) ( ( )).j jE E V E E V E E V V∩ = ∩  (27) 

and sends 0 1 0 1( ( ))jE E V V∩  to 1 jP ; 

5. 1 jP  decrypts 0 1 0 1( ( ))jE E V V∩ to 0 0 1( )jE V V∩  

and sends 0 0 1( )jE V V∩  to 0P ; 

6. 0P  decrypts 0 0 1( )jE V V∩  to 0 1 jV V∩  and sends 

0 1 jV V∩  to 1 jP . 

(To Reviewers: We made a mistake on this protocol in 
our paper submitted to PODS 2005.  This version is 
correct.  We apologize for the confusion.) 

We will prove that given the input of 1 jP  as 1 jV , even 

if 1 jP  deviates from the protocol, 1 jP  cannot learn 

more information about 0V  than the information in 

0 1 jV V∩ . 

PROOF.  First, we show that if 1 jP  is semi-honest, the 

protocol is secure.  Then, we consider the case when 

1 jP  deviates from the protocol. 

Due to the property of commutative encryption 
functions 0E  and 1E , 1 jP  cannot infer any 

information about 0V  from 0 0( )E V .  Since 

0 1 0( ( ))E E V  is derived from 0 0( )E V , we have  

 0 0 0 0 1 0( ) ( ( )).V E V E E V→ →  (28) 

That is, 1 jP  cannot infer any information about 0V  

from 0 1 0( ( ))E E V  either.  Thus, if 1 jP  is semi-honest, 

1 jP  cannot learn more information about 0V  than the 

information in 0 1 jV V∩ . 

Now we consider the case when 1 jP  deviates from the 

protocol.  1 jP  is involved in three steps in the protocol: 

Step 1, Step 3, and Step 5.  Without loss of generality, 
we assume that 1 jP  properly follow the protocol in 

Step 1.  The reason is that if 1 jP  sends 1 1( )jE V  
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instead of 1 1( )jE V  to 0P , we can always consider the 

case as 1 jP  chooses another input 1 jV  instead of 1 jV . 

In Step 3, 1 jP  is supposed to send 1 0 0( ( ))E E V  to 0P .  

Due to the property of 0E  and 1E , 1 jP  cannot 

increase the expected number of data points in 

1 0 0 0 1 1( ( )) ( ( ))jE E V E E V∩  by changing 1 0 0( ( ))E E V  

[13].  Since 0 1 0 1( ( ))jE E V V∩  is calculated by 0P  in 

Step 4, even if 1 jP  deviates from the protocol, 1 jP  

cannot change the expected number of data points in 

0 1 0 1( ( ))jE E V V∩ . 

In Step 5, 1 jP  is supposed to decrypt 

0 1 0 1( ( ))jE E V V∩ to 0 0 1( )jE V V∩ .  Note that the 

number of data points in 0 0 1( )jE V V∩  has already 

been known by 0P  because 0 0 1| ( ) |jE V V∩ = 

0 1 0 1| ( ( )) |jE E V V∩ .  Since 1 jP  cannot derive 

0 1 jV V∩  from 0 0 1( )jE V V∩ , 1 jP  cannot learn more 

information about 0V  by changing 0 0 1( )jE V V∩ . 

Thus, even if 1 jP  deviates from the protocol, 1 jP  

cannot learn more information about 0V  than the 

information in 0 1 jV V∩ .   □ 


